Fracture healing and plate fixation
Mechanics of interfragmentary tissues

Tasks

1a. Slowly pull granulation model horizontally from one side

1b. Note degree of cell deformation as a function of initial gap width

2. Use foam model to demonstrate how deforming forces produce different strain levels between gaps in various fracture configurations.

Learning objectives

- Define absolute and relative stability
- Define the importance of initial gap width onto cell deformation under the condition of relative stability
- Explain the effect of deforming forces on tissue strain

Take-home message

Under relative stability the cells in a small fracture gap can be destroyed because of too high strain (Perren’s strain theory)

Model

Granulation tissue with cells between two bone fragments

Cell deformation under traction

- Numbers indicate cell diameter units
- In each step, the gap is increased by 1 unit
- Relative deformation of the cells is shown

Cell deformation under bending

Compression or distraction of cells in the gap under bending

- Cell destruction when elongation exceeds one cell unit
Fracture healing and plate fixation

Stiffness of composite beam systems under load

Tasks
- Compare stiffness of beam models

Learning objectives
- Describe the bending stiffness of isolated beams with respect to composite beams
- Recognize plate fixation of fractures as a composite beam system
- Describe importance of plate position on overall stiffness of internal fixation using plates

Take-home message
- Plate alone is relatively weak
- Stiffness of plate depends on bending direction
- Important increase of bending stiffness when bone and plate are tightly connected
- Composite system with plate on tension side is the most rigid construct under the condition that the fracture can be axially loaded

In plate osteosynthesis stiffness¹ and strength² depend on these elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>- Cross-section</td>
</tr>
<tr>
<td></td>
<td>- Quality of bone</td>
</tr>
<tr>
<td>Fracture</td>
<td>- Simple versus comminuted fracture</td>
</tr>
<tr>
<td></td>
<td>- Contact versus noncontact situation</td>
</tr>
<tr>
<td>Plate</td>
<td>- Cross-section</td>
</tr>
<tr>
<td></td>
<td>- Material</td>
</tr>
<tr>
<td></td>
<td>- Bending direction</td>
</tr>
<tr>
<td>Screws</td>
<td>- Anchorage</td>
</tr>
<tr>
<td></td>
<td>- Number and position</td>
</tr>
<tr>
<td></td>
<td>- Length of the plate</td>
</tr>
<tr>
<td>Fixation</td>
<td>- Splinting</td>
</tr>
<tr>
<td></td>
<td>- Compression</td>
</tr>
</tbody>
</table>

¹ stiffness = the ability of a material to withstand deformation
² strength = the ability of a material to withstand destruction