

Mechanics of intramedullary fixation Nail design

Connection of nail to bone with radial preload needs

Slotted nail

Examine various nail designs; discuss the advantages and disadvantages of each

Learning outcomes

- Describe different nail designs and their mechanical characteristics
- Explain radial preload and corresponding concept of stabilization

Take-home message

a slotted nail increases the radial preload

Reaming

Nail designs

Slotted nail with cloverleaf section

Solid nail

Cannulated nail

Mechanics

Cylindrical medullary cavity Long-distance contact between bone and nail

Biology

Necrosis of the inner two thirds of bone cortex

station G1/3 | version 2.2 | 01.11.2019

Mechanics of intramedullary fixation Conventional nailing

Nailing without interlocking

Requires a nail with proper length and diameter. Should only be applied when treating fractures in the middle third of the diaphysis, where partial contact between the main fragments is possible. Even then, sufficient rotational stability is difficult to achieve.

Examine stability of different nail constructs

Learning outcomes

- Describe indications for nailing without interlocking
- Identify common problems using nails that are too short or too thin
- Describe possible problems of nailing without interlocking

Take-home message

Residual instability

Nail too short

- Nail does not engage in the distal metaphysis
- Distal fragment unstable

Nail too thin

- No contact between nail and bone in fracture zone
- No radial preload
- Instability at fracture site

station G2/3 | version 2.2 | 01.11.2019

Mechanics of intramedullary fixation Interlocked nailing

Dynamic interlocking

Only distal screws Only proximal

Distal and

Examine stability of different nail constructs

Learning outcomes

- Describe different nail locking options and possible influences on stability of fixation (dynamic locking, static locking)
- Explain elastic stable intramedullary nailing

Take-home message

Nail can stick out proximally screws

Nail can perforate knee joint

through dynamic hole allows controlled dymanization

Dynamic interlocking

Requires partial contact between main fragments

Static interlocking

Distal and proximal screws

- Control of length
- Control of axis
- Control of torsion

Elastic stable intramedullary nailing

- For diaphyseal and metaphyseal fractures in children
- Minimally invasive
- Elastic nail
- Different diameters
- Precontouring needed

Static interlocking

In case of no contact between main fragments

station G 3/3 | version 2.2 | 01.11.2019