Mechanics of intramedullary fixation

Nail design

Tasks
Examine various nail designs; discuss the advantages and disadvantages of each.

Learning outcomes
• Describe different nail designs and their mechanical characteristics
• Explain radial preload and corresponding concept of stabilization

Take-home message
Nail designs
- Slotted nail with cloverleaf section
- Solid nail
- Cannulated nail
- Prevot nails

Connection of nail to bone with radial preload needs

Slotted nail

Reaming
Mechanics
Cylindrical medullary cavity
Long-distance contact between bone and nail

Biology
Necrosis of the inner two thirds of bone cortex

A slotted nail increases the radial preload.
Mechanics of intramedullary fixation

Conventional nailing

Tasks
Examine stability of different nail constructs

Learning outcomes
• Describe indications for nailing without interlocking
• Identify common problems using nails that are too short or too thin
• Describe possible problems of nailing without interlocking

Take-home message

Nailing without interlocking
Needs
• Nail with proper length and diameter

Prerequisites
• Fractures in middle third of diaphysis
• Partial contact between main fragments

Be aware of the need for adequate rotational stability

Nailing without interlocking
Requires a nail with proper length and diameter. Should only be applied when treating fractures in the middle third of the diaphysis, where partial contact between the main fragments is possible. Even then, sufficient rotational stability is difficult to achieve.

Residual instability

Nail too short
• Nail does not engage in the distal metaphysis
• Distal fragment unstable

Nail too thin
• No contact between nail and bone in fracture zone
• No radial preload
• Instability at fracture site
Mechanics of intramedullary fixation

Interlocked nailing

Tasks
Examine stability of different nail constructs

Learning outcomes
• Describe different nail locking options and possible influences on stability of fixation (dynamic locking, static locking)
• Explain elastic stable intramedullary nailing

Static interlocking
In case of no contact between main fragments

Dynamic interlocking
Requires partial contact between main fragments

Dynamic interlocking
Only distal screws
Nail can stick out proximally

Only proximal screws
Nail can perforate knee joint

Distal and proximal screws
Proximal screw through dynamic hole allows controlled dynamization

Static interlocking
Distal and proximal screws
• Control of length
• Control of axis
• Control of torsion

Elastic stable intramedullary nailing
• For diaphyseal and metaphyseal fractures in children
• Minimally invasive
• Elastic nail
• Different diameters
• Precontouring needed

Take-home message
Dynamic interlocking
Requires partial contact between main fragments

Static interlocking
In case of no contact between main fragments